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A method based on the asymptotic joining of expansions is developed for sdving 
the two-point boundary value problem for a system of equations with a single 
small parameter (high P&let number) that occur in the theory of isothermal re- 
actorswithnonhomogeneous fluidized bed. External analytic solution in the form 

of a series containing three terms is derived for the case of small coefficient of 
exchange between bubbles and medium. An analytic solution of the problem is 
presented. It is uniformly valid over the whole segment and accurate to within 
quadratic terms containing the small parameter, which appear in the two-point 
boundary value problem. 

Models of reactors with a nonhomogeneous fluidized bed (see, e. g. [l-4]) 
are based on the concept of the fluidized bed as a two-phase system consisting 

of a cont~uous phase moving in the reactor at the initial fluidization rate, and 
of a discrete phase which is the excess of the fluidizing agent which moves 
through the bed in the form of bubbles. The computation of such type of reactor 
in the case of a reaction of an arbitrary order is complicated even in the one- 
dime~ional case and can only be carried out by numerical methods. Because 
of this, approximate methods of nonlinear mechanics are of particular interest, 
fcJr instance, for the computation of the steady mode of reactor operation. 

A method of solving the steady state equation for the &thermal reactor at 
high P&let numbers was developed, based on the joinirg of ~ymptotic expansions. 

Later, a method similar to that of joining asymptotic expansions was proposed in [7] 
for solving equation of the isothermal reactor. However the extension of that method 
to systems of equations presents some difficulties [8- l.01. Due to the nonlinear- 
ity of equations of the n~isothermal reactor it was not possible to obtain an ex- 

ternal analytic solution in the zero and subsequent approximations. 

1, The two-point boundary value problem occurring in the theory of reactors with 

a no~omogeneous fluidized bed is formulated on several assumptions as follows: 

dax dr 
8-p =-a-q - Kx” -+- S (z - y), $- = s + (II. - y) (1. 1) 

0<4<i 

2(+01=l+e +(+O), q= 0, Y(-w)=o 

where E = z / L is a dimensionless coordinate ; r = x* / x* (- 0) and y = y* ,’ 
y* (-0) define the dimensionless concentration of the reacting substance in the conti- 
nuous phase and in the bubble, Z* (- 0) and y* f-0) is the concentration at the 

reactor iniet; S -= S* / (Lu) is the dimensionless coefficient of exchange between 
bubble and continuous phase ; u is the velocity of the continuous phase and v is the 
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velocity of bubbles ; 
sion coefficient ; K 
E is the order of the 

TWO-pomt boundary value pwblem wth a small parameter 593 

-1 = Pe = Lu. / D 

22 K*Y (- 0) / (Lu) 

is the P&let number and D is the diffu- 

is the dimensionless rate of reaction, and 
reaction taking place in the reactor. 

Let us consider system (1. I.) when E < 1. We seek the soiution by the method of 

successive perturbations 

x (8 = XX (9. Y (9 = XI, (8, zs, $J (Q = 2 C&$ (D (1.2) 
l%=O 

Substituting (1.2) into (1. 1) and setting y (- 0) -- = 0, we obtain the following sys- 
tem of zero approximation equations: 

We restrict the analysis to the case of small coefficients of exchange between bubbles 

and the continuous phase. We represent the solutions of the zero and subsequent appro- 
ximations in terms of e by the series in the small number ,S 

2, Let us investigate the case of second order reaction (n = 2) for the zero appro- 
ximation system 

(t$b, j dg - I#$ = 0, a&f& j aE = 0 (2.1) 

x~~,(+o,= 1, &b)(+q=o 
whose solution is 

71% (E) = i- KE + 11-l 

Using the zero approximation system (2.1) we find that the system of first approxima- 
tion equations in terms of small number S 

~X~~~ / % - 2~~~~~~X~~~ + (x$& - x$&) = 0 (2.2) 

dx%, 
- - -$ cx%, - x$b,) = 0% d6 x$‘l, (+ 0) =z xl”c’l, (+ ‘I) z 0 

can be represented in the form 

XL% (8 = -j$ (1 - x!.% G)), r,$‘lj (9 = s In x$!n (E) 

Similarly to (2.2) the system of second approximation equations in small S is a sys- 
tem of linear no~omogeneous equations whose solution can be represented in the form 
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The solution of the system of nonhomogeneous linear equations for subsequent appro- 

ximations can be always expressed at least in terms of quadratures. 
Let us now consider the system of first approximation equations in E. Substituting 

(1.2) into (1. l), for the first approximation we obtain 

axp 
- - 2Kxf’xg’ + S (x2’ - xt”) = L?g 

dS 
a$’ 

--S$(xP-x;‘)=o, x?‘(+O)=K-s, x;‘(+o)=o dE 

(2.3) 

The solution of this system in the case of small coefficients of surface exchange is 
sought, as previously, in the form (1.4). The zero approximation system 

&~:lo, (+ 0) = K, xd’lo, (-t 0) = 0 

has the following solution: 

x$& 6) = Kx$$ (E) 11 + In x$& (81, X$&J (E) = 0 (2.4) 

The solution of system (2.1) was used for the derivation of (2.4). 

From (2.3) we similarly obtain in the first approximation in terms of S a system of 
equations which has the following solutions: 

- 1) - x%0 (E) ln xi& (81 - 1) 

Finally, by substituting into the system of second approximation equations 

dzg) dB&?) 
-- 2Kx:‘x:’ + S (x:’ - xt”‘) = d4a + Kx$j2 (2.5) 

& 

d$’ 
_ _ + s p&J’ - xf’) = 0 

dE, 

#‘(+0).=2(K-S)(2K-S) ++S2, $‘(+o)=O 

the solution in the form of series in S, we obtain for the zero approximation in terms 

of S the system of equations 

Q!2,),, d2x& 
-z- - ~Kx$I~x% = d42 + Kxsc’20”, 

dX$!J,/@ = 0, x~il,(+ 0) = 4K2, x$3,(+ 0) =o 

whose solutions are 
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&) (8 = w&i, (EN” (9 CX%’ (8 - 1) + 
[(x$&(E) In x%) (EN (2 + ln x20) (E)) + 11h x$)0) (8 = 0 

Solutions of system (2.5) in subsequent approximations in S are similarly obtained. 

3, For obtaining a solution of system (1.1) that satisfies boundary conditions at the 
end of the segment we introduce in the neighborhood of point E = 1 a “boundary layer’ 

[7]. After the substitution of the variable 11 = (1 - E) / E the input system of Eqs. 

(1.1) assumes the form d29, 

Q2 + 

s 

d-rl =ek-%?t~(4,-~,?,)1 (3.1) 

where the terms containing derivatives of $,and I&, with respect to coordinates are the 

greatest, and 5 (E) = 9, (r)) and y (E) = qr, (Y)). As the boundary condition we spe- 
cify that the derivative of $= (11) must vanish when q = 0 . That condition yields the 

relation for the determination of one of the three constants appearing in the solution of 
system (3.1). The other two constants are determined by the method of joining the ex- 
ternal to the internal solution. We represent the solution of (3. 1) by the expansion in 
powers of the small parameter E cc 

(3.2) 

Solution of the system of zero approximation equations is 

I@’ (11) = h$$, St’ (s-t) = h$ 

where h,,(O) and h,,(O) are constants determined by the method of joining. Functions 

J, $ s’atisfy the system of first approximation equations 

and are of the form 
$2’ = I&v + h2’ (q + e-n), $d” = h’$d + h$TJ 

The quantities h,(r) and &r(l) are determined by the following functions of /L_,(O) 

and /z,,~(“) : 
h!&!’ = - [m&T - s (/Q - jg)], h$ = - $ s (/g - @) (3.3) 

and hxotl) and &s(l) are constants determined by joining the internal to the external 
expansion. 

Functions of the second approximation expansion (3.2) satisfy the system of equations 
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and are of the form 

$g’ = h$ + hi? (YJ + e-“) + /&$) q + /$Z (7 + 1) e-l’ 

(2) (2) ‘12 
+&’ = Gi + hylq + &2 2 + @)e-’ 

with h$, h$$, h$j, h$, ht2,’ and $’ are defined in terms of hr,), h$, h$ and 
h(l) by formulas 

l/O 

h$ = - (2Kh:; - S) ([Kh:’ - S (h$“; - h:oo’)] + h$,‘,‘) - (3.4) 

S (5 S (h$i - hl”d) + h$l, h:$) = (2Kh:! - S) [Kh!$’ - 

S (h$) - h$)] + + S? (h:d - htp’), h;; = - + S (h$ - h$,‘d) 

h$ = + S { [Kh$,‘” - S (h$ - h$)] - -$ S (h)P,’ - h$)) 

hf’ z - + S [ KhFp - S (h:; - hto,‘)] 

h$) = - (2Khg; - S) [Kh;? - S (h$ - h$)] 

4, We use the method of joining asymptotic expansions for determining the constants 
appearing in the external solution. We pass to the intermediate variables [7] 11 = r* / 

p (E) and 5 m= 1 (F ,’ p (E)) q*, assuming that e < p (F) (( 1, write the exter- 
nal solution in the form of expansion in E / p (F) < 1 

(4.1) 
T7l=O 

E 

(-> u (e) 

It is convenient to express derivatives of functions xX(m) and &,@) in terms of their 
values at the specified point by using equations of the appropriate approximations, For 
example, for g = 1 for the derivatives of xX(O), xv(O), x,(i) and x,(r) with respect to 
g we have 

d$ d x(O) 
(4.2) -= 

df 
KX$j2 _ S (x!“’ _ x’,“‘), + = -+ ,,$ (X!$ - $‘) 

d2$ 
- = (2Kxf’ - S) [ Kx:‘~ - 

dE2 
s (g’ - xf’)] + + s2 (x’,“’ - x;p ‘) 

d$,?) 
-= 

d’,2 
+ S { Kx!$~ -s (1 +C) (@- xk”‘,) 

dxg) 
-= 

dE, 
2Kx;‘x~’ - S (xc’ _ xt’) + 

(2K$’ - S) [ K$)’ - S (x:’ - $‘)] + 
_$ S2 (xsp’ _ xl”‘), 

To join the internal to the external solution we equate the coefficients at like powers 



of the intermediate variable v* of the ho solutions. In the zero approximation in terms 

of the small parameter E we have 

(4.3) 

x!‘(l) = hipd, 
dx”) (1) 
L = +- $ (hi&? - h$) 

dE 

In deriving this system the exponentially small terms were neglected in internal solu- 

tions. Equations which contain values of external solutions ~~(0) (1) and x&O) (1) de- 
termine constants hXO(uJ = x,(O) (1) and /zyo(0) = #O) (1). The substitution of these 

relationships into the remaining equations of system (4.3) and the use of derivatives at 
point E = 1 , as defined in (4.2), makes it possible to ascertain directly that the second, 

third, fifth and sixth formulas, which correspond to the equality of coefficients at the first 
and second powea of the intermediate variable in the internal and external expansions, 
become identi.ties. 

Thus in the zero approximation in terms of the small parameter the internal solution 
is the same as the external within (8 / p)s. Separating the part common to the external 
and internal solutions, we obtain in the first approximation in terms of E the solutions 

z = )p (E) + EXY (E) + &hi? exp{--J$-}, Y = x!‘(E) (4.4) 

which are equally valid on segment 0 < 2 < 1. In the last equation xi:‘, (E) and 

x:‘,‘, (E) are external solutions of system (1.3). Solutions in the case of small coeffici- 
ents of surface interaction were given in Sect. 1. Constant h,(l) in (4.4) is determined 
by formula (3.3). 

To remain within the accuracy specified for the zero approximation in terms of para- 
meter (E / p)<I it is sufficient to equate the coefficients at the zero and first powers 
of the intermediate variable q* in the external solution to the coefficients at the corre- 
sponding terms in the internal solution. 

As the result we obtain 
xk” (1) = hg, d@(i)/e = - h$?/ 

x;‘(l) = h$, dxt’ (1) / dt = - ht2,’ 

in which the first and third formulas determine hxo(l) = x,(l) (1) and huoO) = x,(l) (1). 
The substitution of these values into the second and fourth formulas with the use of (4.2) 
and (3.4) readily shows that they are identically satisfied. 

Separating the common part with allowance for joining in the first approximation,we 
obtain the solution that is uniformly valid on the whole segment 0 .< E s< 1 

2 (E) = xp (E) + q&’ (0 + E2Xi? (0 + (4.5) 
E@)(v + e-“) + .+ [h?’ (TJ + e-“) + h?&-n (Y + I)1 
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where h,(l) and h2@), hXs(2), &@j are determined by (3.3) and (3.4). 
The comparison of solutions (4.4) and (4.5) shows that the effect of the boundary layer 

on the reagent concentration in the bubble manifests itself in the first approximation. 

In concluding we would point out that the method of solving the two-point boundary 

value problem developed here on the basis of joining asymptotic expansions makes it 
possible to calculate a reactor with a nonhomogeneous fluidized bed in one-dimensional 
approximation without having to resort to numerical computations. 

Unlike the formal extension of the method [5] to the system of equations [lo] the pro- 
posed method makes it possible to find a solution that is uniformly valid along the whole 
segment 0 da % < 1 by first obtaining the analytic formula for related constants with the 
use of the device of joining the external and internal solutions. 

The author thanks V. V. Struminskii for his interest in this paper. 
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